The electronic phase diagram of the LaO(1-x)F(x)FeAs superconductor.
نویسندگان
چکیده
The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, for example in high-transition-temperature cuprates, heavy fermions and organic superconductors. Here superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, for example charge-carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently, high-temperature superconductivity has been discovered in iron pnictides, providing a new class of unconventional superconductors. Similar to other unconventional superconductors, the parent compounds of the pnictides show a magnetic ground state and superconductivity is induced on charge-carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of X-ray scattering, muon spin relaxation and Mössbauer spectroscopy on the series LaO(1-x)F(x)FeAs. We find a discontinuous first-order-like change of the Néel temperature, the superconducting transition temperature and the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in iron pnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.
منابع مشابه
Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs-CaFe2As2-KFe2As2 system
Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe4As4 from a high temperature, quaternary ...
متن کاملخواص مغناطیسی و ساختاری ابررسانای 2223- Bi آلاییده با کادمیوم
In this paper, Bi1.64-xPb0.36CdxSr2Ca2Cu3Oy (BPCSCCO) superconductor with x = 0.0, 0.02, 0.04 and 0.06 is made by the solid state reaction method. The magnetic susceptibility measurements were performed using AC susceptometer. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that t...
متن کاملThe BCS - like gap in superconductor
Since the discovery of superconductivity in the cuprates two decades ago, it has been firmly established that the CuO 2 plane is consequential for high T C superconductivity and a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAs(O 1-x F x) has recently been discovered 1-8 but with the conspicuous lacking of the CuO 2 planes, thus rais...
متن کاملاثر افزودن نانوذرات Gd2O3 بر خواص ساختاری و ابررسانایی YBa2Cu3O7
Gd2O3 nanoparticles were synthesized for the first time by sol-gel combustion method and YBCO high temperature superconductor by sol-gel method. X-ray powder diffraction pattern of the nanoparticles and prepared superconductor showed single phase by both methods. The average size of Gd2O3 nanoparticles, according to the Scherrer formula, computed 29 nm, which is consistent with the results obta...
متن کاملنقش دینامیک شبکه در ابررسانای La2-xBaxCuO4 به روش DFT
Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2009